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ABSTRACT

A new algorithm for the optimization of functional forms of empirical equations of state is

presented which considers data sets of different substances simultaneously. In this way,

functional forms for empirical equations of state can be developed which yield, on average,

the best representation of the thermodynamic properties of all substances within larger

groups of substances (e.g. "nonpolar" and "polar" substances). The new algorithm is being

used to develop a new class of empirical equations of state which meet typical technical

requirements on the accuracy of thermodynamic properties with only about ten fittable

coefficients. First results for nonpolar fluids are reported.

KEY WORDS: equations of state; development of empirical equations of state;

optimization algorithm; nonpolar fluids; methane; argon; oxygen.
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1. INTRODUCTION

Since about 1980, the efficiency of highly accurate wide-range equations of state has

improved tremendously. These improvements are closely linked to the development of

sophisticated optimization algorithms [1-4] which determine the most suitable mathematical

form of an equation of state by selecting the best combination of terms1 from a so-called

"bank of terms"; such a bank of terms is an extensive mathematical set up which contains all

terms considered to be useful for the description of the problem. In comparison to functional

forms established by trial and error, optimized equations of state need about 30% to 50%

fewer terms to achieve the same accuracy and they yield better results when extrapolating

either beyond the limits of the data set used to set up the equation [5] or into regions where

no reliable data have been available.

Unfortunately, extensive data sets are needed to optimize the mathematical structure of an

equation of state and when such optimized equations are fitted to data of another substance

they often lose their advantages since their functional form is constrained to the substance

they were developed for. Therefore, optimized empirical equations of state have so far only

been been available for about 20 substances.

The new optimization algorithm presented here has been developed to overcome these

limitations. The simultaneous use of data sets of different substances in an optimization

                                                       

1 Empirical equations of state are usually formulated as a summation over different

mathematical expressions with one fittable coefficient each. The word "term" refers to one

of these mathematical expressions.
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algorithm results in the functional form, which yields on average the best results for all

considered substances. If the considered substances are representative for a group of

substances (like e.g. the group of "nonpolar" fluids), the resulting formulation can be fitted

to limited data sets of other substances out of this group without significantly reducing

accuracy. Currently the new simultaneous optimization procedure is used to establish a new

class of simple equations of state with about ten fitted coefficients, which are designed to

describe broad groups of substances accurately enough for most technical applications. First

results from this project are given to illustrate the potential of simultaneous optimization

algorithms.

2. THE SIMULTANEOUS OPTIMIZATION ALGORITHM

The simultaneous optimization algorithm presented here is essentially based on the

optimization algorithm by Setzmann and Wagner [4]. This algorithm combines deterministic

elements from the well known stepwise regression analysis [1], such as adding, deleting and

exchanging terms, with elements from the evolutionary optimization method [3], like

mutation and optimization of a "population" of equations. In order to shorten the description

of the new algorithm, the paper of Setzmann and Wagner [4] is referred to wherever

elements of the procedure remained unchanged. The presented paper deals only with the

application of simultaneous optimization to empirical equations of state; nevertheless, the

new algorithm can be applied to completely different problems as well.

For the optimization algorithm of Setzmann and Wagner [4] and for the new simultaneous

optimization algorithm Fig. 1 shows the main steps of the development of an equation of
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state. Both with respect to data and to constraints, the construction of the regression matrix

is completely identical with the procedure described in [4]. The residuals which are

necessary to set up a regression matrix for an equation of state in form of the reduced

Helmholtz energy are given e.g. in [6,7]. Examples for typical bank of terms are given in [6-

8]. For simultaneous optimization, the variables in the bank of terms should be reduced with

the critical temperature Tc and the critical density ρc of the corresponding substance in order

to make use of a simple corresponding states similarity for the functional form of the

equation. Regression matrixes which are set up for simultaneous use have to be based on the

same bank of terms since the optimization algorithm identifies terms only by their position in

the bank of terms.

Figure 2 shows a flowchart of the optimization algorithm of Setzmann and Wagner as given

in [4]. The general structure of this procedure remains unchanged. In step 2, the initial set of

equations in the "population" is determined by repeated random selection of terms. In this

step, a quality criterion is needed in order to determine the best formulations2 which form

the starting population. In the algorithm of Setzmann and Wagner, this quality criterion is

the sum of squares χ 2  which can be calculated from the regression matrix considering only

those terms from the bank of terms which are part of the current formulation. In the

                                                       
2 Here the expression "formulation" refers to the combination of terms which is considered

in the current stadium of the optimization process. The best formulation becomes the

functional form of an equation of state when the results are written to a file after the

optimization procedure is finished.
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simultaneous optimization procedure, the corresponding sum of squares χ i
2  has to be

calculated from each of the I regression matrixes used. Equivalent to χ 2  the quality criterion

could now be defined as

Χ 2 2

1

=
=
∑ χ i
i

I
. (1)

In Eq. (1), extensive data sets of well measured substances which result in high values for χ i
2

have an exaggerated influence on the quality criterion even if the representation of the data

is satisfactory. To avoid this problem, in the simultaneous optimization the sums of squares

χ i
2  are reduced by reference sums of squares, χo i,

2 , resulting from equations of state of the

same length which are optimized individually for the corresponding substance. Thus, in the

simultaneous optimization the reduced sum of squares of the substance i, χ χ χi i o i
*2

,/= 2 2 ,

becomes one if the current formulation describes the data set as well as the equation of state

optimized individually. With these reduced sums of squares, the quality criterion of the

simultaneous optimization, Χ *2 , is defined as

Χ *2 *2
,/= =

==
∑∑ χ χ χi i
i

I

i

I

o i
2

11

2 . (2)

The formulations chosen in the initialization process, step 2 in Fig. 2, are those with the

minimum values for Χ *2 .

When the starting population is determined, the process continues with step 3, "mutation".

In this step, terms from the current formulations are randomly exchanged for other terms

from the bank of terms (see [4]). The quality criterion of the "mutant" is determined in the
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same way as described above. The old formulation is replaced by its mutant if

Χ Χmutant
*2

old< *2 .

In step 4 the modified regression analysis incorporated in the algorithm of Setzmann and

Wagner [4] starts with the selection of the initial terms, which has not been changed in the

new procedure. In order to add the most important term in step 6, the quality criterion has

to be calculated for all J terms from the bank of terms which have not yet been included in

the current formulation. When adding the term j, the sum of squares χ i
2  resulting from the

regression matrix i becomes

χ χi j i
Lj i

jj i

b
b, , ,

,

,
new old

2 2
2

= − , (3)

where b corresponds to an element of the two-dimensional regression matrix and L is the

bottom row of the matrix (see [4]). If all I values χ i j, ,new
2  are determined, the quality

criterion for adding the term j, Χ new,
*2

j  can be calculated according to Eq. (2). The term

which yields the smallest value Χ new,
*2

j  is actually inserted into the formulation. To do so, all

I regression matrixes have to be transformed according to the instructions given in Table I of

the paper of Setzmann and Wagner [4].

After adding a term, the mutation procedure (step 7) is repeated and statistical tests are

applied to test the significance of the terms in the formulation (Student t test, see [4]) and of

the entire formulation (Fisher F test, see [4]). Although these tests are formally valid only for

a single data set, the average values of the statistical probabilities calculated from the I
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considered regression matrixes can be used as criteria for the statistical tests in the

simultaneous optimization procedure.

If the Student t test shows that a term in the current formulation yields no significant

contribution, this term is removed by transformation of all I regression matrixes according to

the instructions given in Table I of the paper of Setzmann and Wagner [4]. If the formulation

as a whole copes with the F test, the next term is added. If not, it is tested whether the

formulation can be improved by exchanging any of the terms in it for any other term from

the bank of terms. Therefore, the quality criterion Χ ex,
*2

kj  has to be determined for every

possible exchange of one of the k terms in the formulation (index k) against one of the J

terms (index j) which are not contained in the formulation. The required values χ ex, ,
*2

kj i  can

be calculated according to Table II in [4]. The exchange with the smallest value for Χ ex,
*2

kj  is

carried out by deleting the term k and adding the term j (see above), if Χ Χex old,
*2 *2

kj < . If the

step "exchange of a term" is successful it is repeated until Χ *2  cannot be improved further

by an exchange of terms. If it is not successful, the F test is applied again to test the

significance of the formulation as a whole. The next term is added if the formulation now

copes with the F test. If it fails again, no further improvement is possible and the procedure

continues with step 5 for the next formulation. When the predetermined number of

regression runs has been carried out, the best results replace the poorest formulations in the

population (see [4]) and the optimization process continues with step 3 for the next

generation until either a predetermined number of generations is finished or all formulations
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in the population are the same. The best formulation in the last generation is regarded as the

functional form which yields on average the best representation of the I considered data sets.

Constraints are dealt with as described in [4], except for the fact that the combination of

removing terms and adding constraints has to be applied to all I regression matrixes.

3. FIRST RESULTS

As a first test for the new optimization algorithm simple correlation equations for properties

at saturation were developed for groups of nonpolar and polar substances. For this simple

application the functional forms resulting from the simultaneous optimization were superior

to the functional forms resulting from the algorithm of Setzmann and Wagner [4] with

regard to the average reduced sum of squares χ*2 *2 /= Χ I , where I is the number of data

sets considered. This result was found for both the substances used in the simultaneous

optimization and the substances used only for comparison. Thus, the functional forms

resulting from simultaneous optimization show the expected advantages when they are fitted

to data sets of other substances belonging to the same group.

As a second test, short equations of state were developed for argon, methane and oxygen

while at the same time data sets were set up for eleven other non- or almost nonpolar fluids

ranging from nitrogen to n-octane. To meet the accuracy requirements of typical technical

applications, the following objectives were defined: ∆ρ/ρ ≤ ±0.2% to ±0.3% for p ≤ 30 MPa

and T ≤ 473 K, ∆ρ/ρ ≤ ±0.5% for p ≤ 100 MPa, ∆p/p ≤ ±0.2% to ±0.3% in the extended

critical region, and ∆y/y ≤ ±1% to ±2%  for caloric properties for p ≤ 100 MPa, except for

the extended critical region.
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These objectives correspond roughly to the uncertainty of typical Bender-type [9] equations

of state which describe the residual fluid behavior with 19 terms and can be met by

individually optimized equations of state with eight to nine terms.

For the residual part of the reduced Helmholtz energy φ r = f r / (RT) of argon, methane, and

oxygen the simultaneous optimization procedure resulted in the functional form

φ τ δ δτ δτ δ τ δ τ δ τ

δ τ δτ δ τ δ τ

δ

δ δ δ δ

r n n n n n e

n e n e n e n e

( , )

,

. . . . .

.50

= + + + +

+ + + +

−

− − − −
1

0 375
2

0 875
3

3 0 375
4

8 1 000
5

2 0 75

6
5 1

7
4

8
3 15

9
6 222 3 4  (4)

 where δ is the reduced density ρ/ρc, τ is the inverse reduced temperature Tc/T, and  R is the

gas constant. The substance specific parameters of Eq. (4) are given in Table I. The

expressions required to calculate thermodynamic properties from an equation of state

formulated in φ r can be found, for example, in [6,7]. As an example, Fig. 3 shows the

uncertainty of thermal properties for methane calculated from Eq. (4). The uncertainties for

argon are slightly lower and those for oxygen are slightly higher especially close to the

melting line; the objectives formulated above are basically met for all three substances.

Table II gives a comparison which is based on average reduced sums of squares

χ*2 *2 /= Χ I  for the three substances used to develop Eq. (4) and for all nonpolar

substances for which the data sets have been completed in the meantime. The reference sums

of squares χo i,
2  result from equations with nine terms individually optimized for each of the

fifteen substances. On average, the simultaneously optimized equation yields better results

than the equations individually optimized for argon, methane and oxygen both for the

substances used to develop the equation (χ1-3,sim
*2  = 1.49, χ1-3,arg

*2  = 2.41, χ1-3,met
*2  = 2.02,
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and χ1-3,oxy
*2  = 6.76) and for all substances (χ1-14,sim

*2  = 8.10, χ1-14,arg
*2  = 10.80, χ1-14,met

*2  =

21.66, and χ1-14,oxy
*2  = 11.71). Nevertheless, it is obvious that argon, methane, and oxygen

are not representative for the group of nonpolar fluids considered here. Until now, the best

functional form with nine terms which has been optimized for a more representative set of

five substances has resulted in an average reduced sum of squares of χ1-14
*2 = 2.55. A

satisfactory description of all substances can be achieved if one more term is added; a

preliminary functional form with ten terms has resulted in χ1-14
*2 = 1.67. Such functional

forms should be suitable at least for all nonpolar pure fluids with an accentric factor of ω <

≈0.4 but the work on this topic has not yet been completed. Fitted to the same data sets, the

Bender equation with 19 terms yields χ1-3,Ben
*2 = 3.02 and χ1-14,Ben

*2 = 2.28.

ACKNOWLEDGMENTS

The authors are indebted to the Deutsche Forschungsgemeinschaft for their financial support

and to Prof. Dr. R. T Jacobsen and Dr. E. W. Lemmon, whose literature database BIBLIO

was very helpful for setting up the required data sets.

REFERENCES

[1] W. Wagner, Fortschr.-Ber. VDI-Z., Ser. 3, No. 39 (1974).

[2] K. M. de Reuck and B. Armstrong, Cryogenics 25: 505 (1979).

[3] J. Ewers and W. Wagner, in Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed.

(American Society of Mechanical Engineers, New York, 1982), pp. 78 - 87.



12

[4] U. Setzman and W. Wagner, Int. J. Thermophys. 10: 1103 (1989).

[5] R. Span and W. Wagner, accepted for publication in Int. J. Thermophys.

[6] U. Setzmann und W. Wagner, J. Phys. Chem. Ref. Data 20: 1061 (1991).

[7] R. Span und W. Wagner, J. Phys. Chem. Ref. Data 25: 1509 (1996).

[8] R. T Jacobsen, R. B. Stewart, and M. Jahangiri, , J. Phys. Chem. Ref. Data 15: 735

(1986).

[9] E. Bender, in Proc. 5th Symp. Thermophys. Prop., C. F. Bonila, ed. (American Society

of Mechanical Engineers, New York, 1970), pp. 227 - 235.



13

Table I. Coefficients and Substance Related Parameters of the Simultaneously Optimized

Equations of State, Eq. (4), for Argon, Methane, and Oxygen.

Argon Methane Oxygen

i ni ni ni

1 1.610871306 1.659011608 1.669490380

2 −2.634808041 −2.694111307 −2.711382338

3 0.083409612 0.082946554 0.086374356

4 0.000048431 0.000048633 0.000045263

5 0.202060214 0.211420114 0.229512622

6 −0.038855616 −0.036942268 −0.041004268

7 −0.121023480 −0.129924031 −0.123006016

8 −0.020548449 −0.019663974 −0.021244360

9 0.001466681 0.001226884 0.001396158

Tc 150.687 K 190.564 K 154.595 K

ρc 535.6 kg ⋅m−3 162.66 kg ⋅m−3 436.14 kg ⋅m−3

R 0.2081333 kJ ⋅kg−1⋅K−1 0.5182705 kJ ⋅kg−1⋅K−1 0.2598382 kJ ⋅kg−1⋅K−1



14

Table II. Reduced Sums of Squares χ i
*2  Resulting from Fitting the Simultaneously

Optimized Functional Form (Eq. (4)) and the Functional Forms Individually

Optimized for Argon, Methan and Oxygen to Data Sets of all Nonpolar

Substances Considered.

χ i
*2  for Functional Forms Optimized

Substance    ω Simultaneously For Argon For Methane For Oxygen

Argon −0.002 2.09 11) 2.04 12.99

Methane 0.011 1.00 2.43 11) 6.28

Oxygen 0.022 1.39 3.81 3.03 11)

Average Value χ1-3
*2 1.49 2.41 2.02 6.76

Nitrogen 0.037 1.00 1.42 2.44 6.26

Ethylene 0.087 10.84 12.84 27.57 3.05

Ethane 0.099 5.09 7.60 14.10 5.21

Propane 0.153 9.70 13.49 22.15 9.63

Isobutane 0.185 10.23 11.39 14.90 5.28

n-Butane 0.200 17.65 25.85 68.38 22.67

Cyclo-Hexane 0.209 13.05 16.81 34.06 27.95

n-Pentane 0.251 13.83 17.40 27.63 14.67

n-Hexane 0.308 14.26 17.55 33.03 22.68

n-Heptane 0.350 9.21 13.85 23.08 15.85

n-Octane 0.391 4.04 5.74 29.86 10.46

Average Value χ1-14
*2 8.10 10.80 21.66 11.71

1) Reference equation used to determine χ o
2  for the corresponding substance
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FIGURE CAPTIONS

Fig. 1. Main steps of the development of an equation of state using either the well known

algorithms for individual opimization or the new algorithm for simultaneous

optimization.

Fig. 2. Flowchart of the optimization algorithm of Setzmann and Wagner [4].

Fig. 3. Tolerance diagram for densities calculated from the simultaneously optimized

equation of state, Eq. (4), applied to methane.
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